Apple ruft Machine-Learning-Blog ins Leben

Neben den anderen US-Tech-Konzernen schien Apple bezüglich Machine Learning immer ein Schattendasein zu fristen, zumindest wirkte es so. Der Grund lag eher darin, dass Amazon, Facebook, Google und Microsoft mit ihren Versuchen und Erfolgen sehr öffentlich umgehen, während Apple im Verborgenen arbeitet und erst an die Öffentlichkeit geht, wenn sie von ihrem Produkt überzeugt sind.

Hinsichtlich Machine Learning ruft Apple nun eine bemerkenswerte Neuheit ins Leben und veröffentlicht auf einem eigenen Blog namens Apple Machine Learning Journal Beiträge zu Themen wie maschineller Text-, Bild-, Stimmen- und Spracherkennung. Die englischsprachigen Artikel gehen angenehm in die Tiefe und behandeln Ansätze wie Neuronale Netze, gehen aber auch in interdisziplinäre Gebiete wie beispielsweise linguistische Modelle.

Was ist der Turing-Test?

Der Turing-Test ist eine Idee des britischen Mathematikers und Informatikers Alan Turing. 1950 formulierte er eine Möglichkeit, festzustellen, ob eine Maschine genauso gut denken kann, wie ein Mensch.

Testaufbau

Der Test hat folgende Aufstellung: Ein Mensch sitzt vor einem Bildschirm und einer Tastatur. Er oder sie hat keinen sinnlichen Kontakt zu seinem oder ihrem Gesprächspartnerin oder Gesprächspartner. Dabei kann der Gesprächspartner ein Mensch oder eine Maschine sein.

Nun kommunizieren die beiden Gesprächspartner über Bildschirm und Tastatur. Ist einer der beiden Gesprächspartner eine Maschine und der Mensch kann nach einer längeren Zeit der Kommunikation nicht mit Sicherheit sagen kann, ob es sich beim Gegenüber um einen Menschen oder eine Maschine handelt, hat die Maschine den Turing-Test bestanden.

Was sind praktische Probleme von Machine Learning?

Ein gutes Ergebnis auf Basis von Machine-Learning-Modellen steht und fällt mit der Qualität der zur Verfügung stehenden Daten. Im Folgenden finden sich einige praktische Probleme, die im Alltag beim Einsatz von Machine Learning auftreten.

Unvollständige Daten

Es ist weder ungewöhnlich noch unwahrscheinlich, dass bei einer Menge von tausenden Datenerhebungen einige Werte fehlen oder offensichtlich fehlerhaft sind. Beispielsweise lassen manche Teilnehmerinnen und Teilnehmer einer Befragung das Feld für das „Einkommen“ oder das „Alter“ leer. Oder es gibt Missverständnisse beim Ausfüllen eines Befragungsbogens, so dass im Feld „Alter“ beispielsweise „Hannover“ steht, weil die befragte Person beim Ausfüllen in der Zeile verrutscht ist. „Was sind praktische Probleme von Machine Learning?“ weiterlesen

Was sind grundsätzliche Probleme von Machine Learning?

Schauen wir uns einmal das Diagramm oben an.

Die Zahl der Störche steigt, die Zahl der geborenen Kinder ebenfalls. In manchen Jahren fällt die Zahl der gesichteten Störche allerdings und die Zahl der geborenen Kinder sinkt in diesen Zeiträumen proportional.

Schaut man sich die Daten an, so ist alles korrekt: Die Zahlen stimmen, die Zuordnung zu den Jahren ist auch richtig. Kein Zweifel: Unser Diagramm zeigt deutlich einen Zusammenhang zwischen der Zahl der Geburten und der Anzahl der Störche. Stimmt es also doch? Bringen Störche die Kinder? Natürlich nicht. „Was sind grundsätzliche Probleme von Machine Learning?“ weiterlesen

Statistische Auswertung: Manipulieren nach Zahlen

„Politicians use statistics in the same way that a drunk uses lamp-posts—for support rather than illumination.“ (Andrew Lang, schottischer Schriftsteller)

Im Dezember 2016 macht eine Studie namens Perils of Perception die Runde, in der die Diskrepanz zwischen Wahrnehmung und Realität zur Geltung kommt. In zwölf Ländern wurden von IPSOS MORI Menschen befragt, wie hoch sie den muslimischen Anteil der Menschen innerhalb der eigenen Bevölkerung schätzen. In allen Ländern wurde dieser Anteil ausnahmslos viel zu hoch eingeschätzt.

Dabei verschätzten sich die Menschen teilweise um den Faktor Vier: Beispielsweise denken die Franzosen, dass 32 % ihrer eigenen Bevölkerung islamischen Glaubens sind, tatsächlich sind es etwa 8 %. Teilweise verschätzen sich die Menschen sogar um den Faktor 17: So denken US-Amerikaner, dass 17 % der Bevölkerung Moslems sind, tatsächlich sind es nur 1 %. Aber die Darstellung der Ergebnisse ist problematisch. „Statistische Auswertung: Manipulieren nach Zahlen“ weiterlesen

Wozu braucht man Machine Learning?

Viele Herausforderungen sind zu komplex, um sie im Detail im Vorhinein zu programmieren. Menschen und Tiere vollbringen im Alltag Hunderte von Taten, ohne über diese nachzudenken: Gegenstände in ihrer Gänze erkennen, Sprache verstehen, Gefühle interpretieren und vieles mehr. Versucht man, diese so alltäglichen Tätigkeiten von einem Computer erledigen zu lassen, so stößt man mit dem herkömmlichen Ansatz, alle erdenklichen Situationen im Vorhinein zu bedenken und beispielsweise in einer Datenbank zu speichern, an eine nicht zu überwindende Grenze. Denkt man aber etwa an selbstfahrende Autos, so wird recht schnell klar, dass es unmöglich ist, jede Begebenheit unter allen erdenklichen Umständen an jedem Ort der Welt zu jeder Zeit vorauszudenken und dafür eine Lösung zu programmieren, so dass der Bord-Computer des Wagens im Eintreffen eines bestimmten Falles diesen identifizieren und aus der Datenbank abrufen kann. „Wozu braucht man Machine Learning?“ weiterlesen

Der allererste Erfolg beim Machine Learning mit Python

Nichts ist motivierender als ein allererster schneller Erfolg beim Erlernen einer neuen Sache und so ist es auch beim Machine Learning. Sind alle Voraussetzungen zum Start mit dem Erlernen von Machine Learning gegeben, können wir an einem ersten, einfachen Beispiel erfahren, was die Grundprinzipien des maschinellen Lernens sind. „Der allererste Erfolg beim Machine Learning mit Python“ weiterlesen

Amazon Machine Learning für alle auf der AWS re:Invent 2016

Auf der AWS re:Invent 2016 hat Amazon verschiedene Machine-Learning-Services der Öffentlichkeit vorgestellt. Insbesondere drei bisher interne Werkzeuge sollen die Phantasie der Entwicklergemeinde wecken: Rekognition, Polly und Lex. „Amazon Machine Learning für alle auf der AWS re:Invent 2016“ weiterlesen

20 kostenlose Bücher zu Machine Learning für Anfänger und Fortgeschrittene

Im folgenden sind 20 kostenlose Bücher zur Datenanalyse und Datenauswertung verknüpft, die Anfängern und Fortgeschrittenen helfen, sich in das maschinelle Lernen einzuarbeiten. Alle Bücher sind auf Englisch. Manche der Bücher liegen als PDF vor, andere wiederum lassen sich auf ihrer jeweiligen Web-Seite lesen. Nicht alle Werke richten sich an Anfänger, aber bei 20 unterschiedlichen Links sollte für jede und jeden etwas dabei sein.

Die Themen reichen von Machine Learning über explorativer Datenanalyse bis hin zur Datenauswertung mit Big Data im Unternehmensumfeld. Viele Bücher sind dabei im Hinblick auf den praktischen Einsatz der vorgestellten Techniken in Algorithmen verfasst. Es gibt allerdings auch mehrere Werke, die für einen theoretischen Unterbau der Datenauswertung sorgen. Dabei verwenden die praktischen Exemplare nicht immer Python als Programmiersprache, sondern auch R.

Die Bücher sind in zwei Kategorien unterteilt: Die ersten Werke richten sich eher an Einsteiger ins Machine Learning. Aus den Büchern der zweiten Kategorie werden eher Menschen einen Nutzen ziehen, die sich bereits mit Machine Learning beschäftigt haben und nun weiterführende Informationen suchen. „20 kostenlose Bücher zu Machine Learning für Anfänger und Fortgeschrittene“ weiterlesen